The Pulley and the Pendulum: Thinking Maps for ESOL Science Marjorie Cooper marjoriecooper@globalvillageproject.org Mary Lou McCloskey ml@mlmcc.com **The Global Village Project** www.globalvillageproject.org

Handouts: www.mlmcc.com

Flow Chart of Session Sequence Pendulum Post Intros Need Introduce Simple Summary Numbered Demonstration Machines Sequence and and Heads Map of Research Review Lesson Strategy ELS Marjorie **Observations**, Vocabulary Vocab Demonstrate and Practice & Mary Recording Game: I Content & Have, Lou Data, Language Who Analysis Has? GVP Visual Challenge Review . • Plan Website Context/ with Observation Map Graphics Brace s and Map Recording Data • **Revise plan** • Analyze . Plan next challenge

The Global Village Project

Helping Teenage Refugee Girls Achieve TheirEducational Dreams...www.globalvillageproject.org

Who are We? We Serve:

- Refugee
- Teenage
- Girls

with

Interrupted Education

Afghanistan Burma (Chin) Burma (Karen) Burma (Royhinga **Central** African Republic Democratic Republic the Congo **Eritrea** Ethiopia Iraq Nepal **Rwanda** Somalia Pass-through countries: Thailand Uganda Kenya

Amharic Arabic Burmese Burmese Dari English French Karen Kinyarwanda Lingala Matu Chin Nepali Pashto Portuguese Royhinga Sango Somali Swahili Tigrinya

Students come from 10 countries/cultures and speak 19 languages.

KAZANHSTAN

GVP Program

- English language development
- Guided Reading
- STEAM-based learning
 - Science
 - Technology
 - Engineering
 - Arts
 - Mathematics
- Mentoring
- Community-focus

The Need

- English Learners in science class perform at multiple levels and may have interrupted education.
- They need additional scaffolding to make content accessible and promote cognition
- Visual models positively enhance learning (Tzeng, 2010)
- Graphic organizers like Thinking Maps (Hyerle, 2011) provide schema to provide this scaffolding.
- Maps lend themselves to active, interactive learning environments in which learners take initiative and have responsibility. (Applebee, 1996)

Integrated Curriculum

How big are the oceans? Huge, enormous, gigantic! Southern, Indian, and Arctic, Pacific and Atlantic

What makes up the ocean? Nater, Three levels deep Daylight, Twilight, and Midnight Full of good things to eat

(1) Who lives in the ocean? Who? Who

Science with Language

- Focus on thinking Thinking Maps
- Incorporating language objectives
- Integrated with school-wide themes
- GA Middle School Science
 Content
- Filling in gaps from earlier grades
- Active, Interactive, constructivist learning

The Challenge

- 1. Design a ramp (inclined plane).
- 2. Run the car (wheel and axle) down the ramp to hit a target.
- 3. Modify your ramp as needed.
- 4. Record your attempts.

Goal: Hit the target with your car three times in a row.

Engineering

- Dedicated STEAM Class
- Collaborative instruction with math and science teachers.
- Hands-on, integrated experiences in discovering and inventing. Example: Simple Machines with Thinking Maps

Thinking Maps in the Science Classroom

8 Basic Thinking Maps

Double-Bubble Thinking Map Comparing and Contrasting Fish and Whale

Tree Map Classifying Forms of Energy

Diagram Describing the Eye, and **Flow Map** Showing How Eye Responds to Light

covnea ens optician = work c-eyes ight reflects - 7 goes through pupil > Message to brain on optic nerve hits retinal

Brace Map Showing Parts of a Science Book about Energy

Flow Map Showing Sequencing (River Water to Purified water.)

Thinking Maps in the Science Classroom: Video

Pendulum Demonstration

- Demo with pendulum
 - Observe and count the number of times the pendulum swings.
- Discuss:
 - -What happened?
 - Why?
- Introduce terms with cards: push, pull, force, friction, gravity

Pendulum Lesson

Vocabulary introduced: Push Pull Force **Motion** Energy Friction Gravity **Potential** Kenetic

Pendulum Demonstration

Heads Together

 Groups of about 4 number off.

- 2. T presents question/challenge.
- 3. Groups put heads together to find the answer.
- 4. T calls out a number; group members with that number answer the question.
- 5. T gives feedback, points, and asks again.

The Six Simple Machines and Examples

Find the Simple Machines: Instructions

- 1. In your group, put your heads together.
- 2. Look carefully at the image on the next slide.
- Find examples of the six simple machines and write them on your chart
- 4. Make sure all group members are prepared to give your group's answer.

The Challenge

- 1. Design a ramp (inclined plane).
- 2. Run the car (wheel and axle) down the ramp to hit a target.
- 3. Modify your ramp as needed.
- 4. Record your attempts.

Goal: Hit the target with your car three times in a row.

Bull's Eye Experiment Data Chart

Objective: Hit the bull's-eye with the vehicle in the shortest time.

				_
Attempt	How far did	Did you hit the	How high was	How fast did it
number:	your vehicle	bull's-eye?	the top of the	hit the bull's-
	go?		ramp?	eve?
1	6 °.		p.	
1				
2				
2				
3				
4				
5				
6				

I Have, Who Has Vocabulary Review

- Teach vocabulary. Use important terms frequently and give learners opportunities as well
- Create game cards using template (handout)
- Start with first card.
- Exchange cards, start again.
- Add new challenges, e.g., timed trials.

I Have, Who Has?

I have the first card.	I have inclined plane	
Who has inclined plane?	Who has screw ?	
I have screw .	I have pulley .	
Who has pulley ?	Who has lever?	
I have lever .	I have wheel and axle.	
Who has wheel and axle?	Who has wedge?	

I have wedge .	I have wedge .
Who has nation ?	Who has work?
I have work .	I have push .
Who has push ?	Who has forces ?
I have forces .	I have friction .
Who has friction ?	Who has gravity ?

Summary: Brace Map Showing Whole to Part

- Scaffolding Language and Content with Thinking Maps Science
- Hands-on experiences to connect to previous experiences
- Cooperative experiences to motivate and promote social learning
- Mapping analysis and connecting to cognition with thinking maps
- Enhancing discussion by introducing language of science
- Opportunities to describe, analyze orally
- Language frames to support writing and oral reports
- Rich and varied experiences with vocabulary

The Pulley and the Pendulum: Thinking Maps for ESOL Science Marjorie Cooper marjoriecooper@globalvillageproject.org Mary Lou McCloskey ml@mlmcc.com The Global Village Project www.globalvillageproject.org Handouts: www.mlmcc.com